Back to Search Start Over

Distributed Learning and Inference With Compressed Images.

Authors :
Katakol, Sudeep
Elbarashy, Basem
Herranz, Luis
van de Weijer, Joost
Lopez, Antonio M.
Source :
IEEE Transactions on Image Processing; 2021, Vol. 30, p3069-3083, 15p
Publication Year :
2021

Abstract

Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing, smartphones). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time (i.e. test), or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077697
Full Text :
https://doi.org/10.1109/TIP.2021.3058545