Back to Search Start Over

Graph-Embedded Lane Detection.

Authors :
Lu, Pingping
Xu, Shaobing
Peng, Huei
Source :
IEEE Transactions on Image Processing; 2021, Vol. 30, p2977-2988, 12p
Publication Year :
2021

Abstract

Lane detection on road segments with complex topologies such as lane merge/split and highway ramps is not yet a solved problem. This paper presents a novel graph-embedded solution. It consists of two key parts, a learning-based low-level lane feature extraction algorithm, and a graph-embedded lane inference algorithm. The former reduces the over-reliance on customized annotated/labeled lane data. We leveraged several open-source semantic segmentation datasets (e.g., Cityscape, Vistas, and Apollo) and designed a dedicated network that can be trained across these heterogeneous datasets to extract lane attributes. The latter algorithm constructs a graph to represent the lane geometry and topology. It does not rely on strong geometric assumptions such as lane lines are a set of parallel polynomials. Instead, it constructs a graph based on detected lane nodes. The lane parameters in the world coordinate are inferred by efficient graph-based searching and calculation. The performance of the proposed method is verified on both open source and our own collected data. On-vehicle experiments were also conducted and the comparison with Mobileye EyeQ2 shows favorable results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077681
Full Text :
https://doi.org/10.1109/TIP.2021.3057287