Back to Search Start Over

Learning Semantic-Aware Local Features for Long Term Visual Localization.

Authors :
Fan, Bin
Zhou, Junjie
Feng, Wensen
Pu, Huayan
Yang, Yuzhu
Kong, Qingqun
Wu, Fuchao
Liu, Hongmin
Source :
IEEE Transactions on Image Processing; 2022, Vol. 31, p4842-4855, 14p
Publication Year :
2022

Abstract

Extracting robust and discriminative local features from images plays a vital role for long term visual localization, whose challenges are mainly caused by the severe appearance differences between matching images due to the day-night illuminations, seasonal changes, and human activities. Existing solutions resort to jointly learning both keypoints and their descriptors in an end-to-end manner, leveraged on large number of annotations of point correspondence which are harvested from the structure from motion and depth estimation algorithms. While these methods show improved performance over non-deep methods or those two-stage deep methods, i.e., detection and then description, they are still struggled to conquer the problems encountered in long term visual localization. Since the intrinsic semantics are invariant to the local appearance changes, this paper proposes to learn semantic-aware local features in order to improve robustness of local feature matching for long term localization. Based on a state of the art CNN architecture for local feature learning, i.e., ASLFeat, this paper leverages on the semantic information from an off-the-shelf semantic segmentation network to learn semantic-aware feature maps. The learned correspondence-aware feature descriptors and semantic features are then merged to form the final feature descriptors, for which the improved feature matching ability has been observed in experiments. In addition, the learned semantics embedded in the features can be further used to filter out noisy keypoints, leading to additional accuracy improvement and faster matching speed. Experiments on two popular long term visual localization benchmarks (Aachen Day and Night v1.1, Robotcar Seasons) and one challenging indoor benchmark (InLoc) demonstrate encouraging improvements of the localization accuracy over its counterpart and other competitive methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
31
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077302
Full Text :
https://doi.org/10.1109/TIP.2022.3187565