Back to Search
Start Over
Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms.
- Source :
- Cell Biology & Toxicology; Aug2023, Vol. 39 Issue 4, p1395-1411, 17p
- Publication Year :
- 2023
-
Abstract
- Perioperative risk factors, including the choice of anesthetics, may influence ovarian cancer recurrence after surgery. Inhalational anesthetic sevoflurane and intravenous agent propofol might affect cancer cell metabolism and signaling, which, in turn, may influence the malignancy of ovarian cancer cells. The different effects between sevoflurane and propofol on ovarian cancer cell biology and underlying mechanisms were studied. Cultured ovarian cancer cells were exposed to 2.5% sevoflurane, 4 μg/mL propofol, or sham condition as the control for 2 h followed by 24-h recovery. Glucose transporter 1 (GLUT1), mitochondrial pyruvate carrier 1 (MPC1), glutamate dehydrogenase 1 (GLUD1), pigment epithelium-derived factor (PEDF), p-Erk1/2, and hypoxia-inducible factor 1-alpha (HIF-1α) expressions were determined with immunostaining and/or Western blot. Cultured media were collected for <superscript>1</superscript>H-NMR spectroscopy-based metabolomics analysis. Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to analyze metabolomics data. Sevoflurane increased the GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α expressions but decreased the PEDF expression relative to the controls. In contrast to sevoflurane, propofol decreased GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α but increased PEDF expression. Sevoflurane increased metabolite isopropanol and decreased glucose and glutamine energy substrates in the media, but the opposite changes were found after propofol treatment. Our data indicated that, unlike the pro-tumor property of sevoflurane, propofol negatively modulated PEDF/Erk/HIF-1α cellular signaling pathway and inhibited ovarian cancer metabolic efficiency and survival, and hence decreased malignancy. The translational value of this work warrants further study. • Sevoflurane promoted but propofol inhibited ovarian cancer cell biology. • Sevoflurane upregulated but propofol downregulated the GLUT1, MPC1, and GLUD1 expressions of ovarian cancer cells. • Sevoflurane enhanced but propofol inhibited ovarian cancer cellular glucose. metabolism and glutaminolysis. • Sevoflurane downregulated PEDF but upregulated the Erk pathway and HIF-1α, while propofol had the adverse effects on ovarian cancer cells. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 07422091
- Volume :
- 39
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Cell Biology & Toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 169945672
- Full Text :
- https://doi.org/10.1007/s10565-022-09766-6