Back to Search Start Over

Homogeneous drag models in gas–solid fluidization: Big data analytics and conventional correlation.

Authors :
Ouyang, Bo
Zhu, Li‐Tao
Wen, Zhao‐Quan
Chen, Xizhong
Luo, Zheng‐Hong
Source :
AIChE Journal; Sep2023, Vol. 69 Issue 9, p1-14, 14p
Publication Year :
2023

Abstract

The drag force model is vital for capturing gas–solid flow dynamics in many simulation approaches. Most of the homogeneous drag models in the literature are expressed as a function of phase fraction (ε) and particle Reynolds number (Res). In this work, we use a "big data" approach to analyze ~108 data points for drag coefficient (Fd) for Geldart Group A particles at atmospheric pressure and find that the contribution of Res on Fd is much less than ε based on the Maximal information coefficient analysis. Thus, these drag models are separately reduced to machine learning and conventional expressions only related to ε. The reduced models achieve almost the same predictive performance as the originals in bubbling, turbulent, and jet fluidizations. Moreover, the reduced models provide better numerical stability for coarse grid simulations. These findings provide new insights into the drag coefficient for Geldart Group A particles under full fluidization conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00011541
Volume :
69
Issue :
9
Database :
Complementary Index
Journal :
AIChE Journal
Publication Type :
Academic Journal
Accession number :
169915377
Full Text :
https://doi.org/10.1002/aic.18170