Back to Search Start Over

Zonal variability of methane trends derived from satellite data.

Authors :
Hachmeister, Jonas
Schneising, Oliver
Buchwitz, Michael
Burrows, John P.
Notholt, Justus
Buschmann, Matthias
Source :
Atmospheric Chemistry & Physics Discussions; 8/11/2023, p1-30, 30p
Publication Year :
2023

Abstract

The Tropospheric Monitoring Instrument (TROPOMI) on-board the satellite Sentinel-5 Precursor (S5P) is part of the latest generation of trace gas monitoring satellites and provides a new level of spatio-temporal information with daily global coverage, which enable the calculation of daily globally averaged CH4 concentrations. To investigate changes of atmospheric methane, the background CH4 level (i.e. the CH4 concentration without seasonal and short-term variations) has to be determined. CH4 growth rates vary in a complex manner and high-latitude zonal averages may have gaps in the time series, thus simple fitting methods don't produce reliable results. In this manuscript we present an approach based on fitting an ensemble of Dynamic Linear Models (DLMs) to TROPOMI data, from which the best model is chosen with the help of cross-validation to prevent overfitting. We present results of global annual methane increases (AMIs) for the first 4.5 years of S5P/TROPOMI data which show good agreement with AMIs from other sources. Additionally, we investigated what information can be derived from zonal bands. Due to the fast meridional mixing within hemispheres we use zonal growth rates instead of AMIs, since they provide a daily temporal resolution. Clear differences can be observed between Northern and Southern Hemisphere growth rates, especially during 2019 and 2022. The growth rates show similar patterns within the hemispheres and show no short-term variations during the years, indicating that air masses within a hemisphere are well-mixed during a year. Additionally, the growth rates derived from S5P/TROPOMI data are largely consistent with growth rates derived from CAMS global inversion optimized (CAMS/INV) data. In 2019 a reduction in growth rates can be observed for the Southern Hemisphere, while growth rates in the Northern Hemisphere stay stable or increase. During 2020 a strong increase in Southern Hemisphere growth rates can be observed, which is in accordance with recently reported increases in Southern Hemisphere wetland emissions. In 2022 the reduction of the global AMI can be attributed to decreased growth rates in the Northern Hemisphere, while growth rates in the Southern Hemisphere remain high. Investigations of fluxes from CAMS/INV data support these observations and suggest that the Northern Hemisphere decrease is mainly due to the decrease in anthropogenic fluxes while in the Southern Hemisphere wetland fluxes continued to rise. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807367
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics Discussions
Publication Type :
Academic Journal
Accession number :
169903508
Full Text :
https://doi.org/10.5194/egusphere-2023-1680