Back to Search
Start Over
Self-assembled GLP-1/glucagon peptide nanofibrils prolong inhibition of food intake.
- Source :
- Frontiers in Endocrinology; 2023, p1-14, 14p
- Publication Year :
- 2023
-
Abstract
- Introduction: Oxyntomodulin (Oxm) hormone peptide has a number of beneficial effects on nutrition and metabolism including increased energy expenditure and reduced body weight gain. Despite its many advantages as a potential therapeutic agent, Oxm is subjected to rapid renal clearance and protease degradation limiting its clinical application. Previously, we have shown that subcutaneous administration of a fibrillar Oxm formulation can significantly prolong its bioactivity in vivo from a few hours to a few days. Methods: We used a protease resistant analogue of Oxm, Aib2-Oxm, to form nanfibrils depot and improve serum stability of released peptide. The nanofibrils and monomeric peptide in solution were characterized by spectroscopic, microscopic techniques, potency assay, QCM-D and in vivo studies. Results: We show that in comparison to Oxm, Aib2-Oxm fibrils display a slower elongation rate requiring higher ionic strength solutions, and a higher propensity to dissociate. Upon subcutaneous administration of fibrillar Aib2-Oxm in rodents, a 5-fold increase in bioactivity relative to fibrillar Oxm and a significantly longer bioactivity than free Aib2-Oxm were characterized. Importantly, a decrease in food intake was observed up to 72-hour post-administration, which was not seen for free Aib2-Oxm. Conclusion: Our findings provides compelling evidence for the development of long-lasting peptide fibrillar formulations that yield extended plasma exposure and enhanced in vivo pharmacological response. [ABSTRACT FROM AUTHOR]
- Subjects :
- PEPTIDES
FOOD consumption
PEPTIDE hormones
WEIGHT gain
IONIC solutions
INGESTION
Subjects
Details
- Language :
- English
- ISSN :
- 16642392
- Database :
- Complementary Index
- Journal :
- Frontiers in Endocrinology
- Publication Type :
- Academic Journal
- Accession number :
- 169899870
- Full Text :
- https://doi.org/10.3389/fendo.2023.1217021