Back to Search Start Over

H3N2 influenza A virus gradually adapts to human-typ receptor binding and entry specificity after the start of the 1968 pandemic.

Authors :
Mengying Liu
Bakker, A. Sophie
Yoshiki Narimatsu
van Kuppeveld, Frank J. M.
Clausen, Henrik
de Haan, Cornelis A. M.
de Vries, Erik
Source :
Proceedings of the National Academy of Sciences of the United States of America; 8/1/2023, Vol. 120 Issue 31, p1-10, 21p
Publication Year :
2023

Abstract

To become established upon zoonotic transfer, influenza A viruses (IAV) need to switch binding from "avian-type" α2-3-linked sialic acid receptors (2-3Sia) to "human-type" Siaα2-6-linked sialic acid receptors (2-6Sia). For the 1968 H3N2 pandemic virus, this was accomplished by two canonical amino acid substitutions in its hemagglutinin (HA) although a full specificity shift had not occurred. The receptor repertoire on epithelial cells is highly diverse and simultaneous interaction of a virus particle with a range of low-to very low-affinity receptors results in tight heteromultivalent binding. How this range of affinities determines binding selectivity and virus motility remains largely unknown as the analysis of low-affinity monovalent HA-receptor interactions is technically challenging. Here, a biolayer interferometry assay enabled a comprehensive analysis of receptor-binding kinetics evolution upon host-switching. Virus-binding kinetics of H3N2 virus isolates slowly evolved from 1968 to 1979 from mixed 2-3/2-6Sia specificity to high 2-6Sia specificity, surprisingly followed by a decline in selectivity after 1992. By using genetically tuned HEK293 cells, presenting either a simplified 2-3Sia- or 2-6Sia-specific receptor repertoire, receptor-specific binding was shown to correlate strongly with receptor-specific entry. In conclusion, the slow and continuous evolution of entry and receptor-binding specificity of seasonal H3N2 viruses contrasts with the paradigm that human IAVs need to rapidly acquire and maintain a high specificity for 2-6Sia. Analysis of the kinetic parameters of receptor binding provides a basis for understanding virus-binding specificity, motility, and HA/neuraminidase balance at the molecular level. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
120
Issue :
31
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
169860863
Full Text :
https://doi.org/10.1073/pnas.2304992120