Back to Search Start Over

From Perspective Maps to Epigraphical Projections.

Authors :
Friedlander, Michael P.
Goodwin, Ariel
Hoheisel, Tim
Source :
Mathematics of Operations Research; Aug2023, Vol. 48 Issue 3, p1711-1740, 30p
Publication Year :
2023

Abstract

The projection onto the epigraph or a level set of a closed proper convex function can be achieved by finding a root of a scalar equation that involves the proximal operator as a function of the proximal parameter. This paper develops the variational analysis of this scalar equation. The approach is based on a study of the variational-analytic properties of general convex optimization problems that are (partial) infimal projections of the sum of the function in question and the perspective map of a convex kernel. When the kernel is the Euclidean norm squared, the solution map corresponds to the proximal map, and thus, the variational properties derived for the general case apply to the proximal case. Properties of the value function and the corresponding solution map—including local Lipschitz continuity, directional differentiability, and semismoothness—are derived. An SC<superscript>1</superscript> optimization framework for computing epigraphical and level-set projections is, thus, established. Numerical experiments on one-norm projection illustrate the effectiveness of the approach as compared with specialized algorithms. Funding: This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC). M.P. Friedlander was supported by NSERC discovery grant [Grant RGPIN-2017-04461]. T. Hoheisel was supported by NSERC discovery grant [Grant RGPIN-2017-04035]. A. Goodwin's work was partially supported by an NSERC summer research stipend. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0364765X
Volume :
48
Issue :
3
Database :
Complementary Index
Journal :
Mathematics of Operations Research
Publication Type :
Academic Journal
Accession number :
169834713
Full Text :
https://doi.org/10.1287/moor.2022.1317