Back to Search Start Over

Process and Drying Behavior Toward Higher Drying Rates of Hard Carbon Anodes for Sodium‐Ion Batteries with Different Particle Sizes: An Experimental Study in Comparison to Graphite for Lithium‐Ion‐Batteries.

Authors :
Klemens, Julian
Schneider, Luca
Burger, David
Zimmerer, Nadine
Müller, Marcus
Bauer, Werner
Ehrenberg, Helmut
Scharfer, Philip
Schabel, Wilhelm
Source :
Energy Technology; Aug2023, Vol. 11 Issue 8, p1-11, 11p
Publication Year :
2023

Abstract

Sodium‐ion batteries are considered to be one of the most promising postlithium batteries on the verge of commercialization. The electrode processing is expected to be similar to lithium‐ion batteries. However, the producibility and material processing challenges of potential electrode materials for anodes and cathodes are poorly understood. For industrial electrode production, a deep understanding of the processing of electrode materials with different particle morphologies is of great importance. In particular, the correlation between the process conditions and the electrode properties needs to be investigated further to understand the complex interactions between the battery slurry materials, the binder system, the drying process, and the microstructure formation. One promising anode material is hard carbon. The water‐based processing of hard carbon slurries presented in this article shows that the drying behavior is strongly interconnected with the particle size and particle interactions in the drying electrode. This study shows that all the hard carbons investigated do not exhibit binder migration at moderate drying rates. Even at very high drying rates (9 g m−2 s−1, 12 s drying time), an increase in adhesion force of up to 39% is observed for comparatively smaller particles compared to the adhesion force at lower drying rate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21944288
Volume :
11
Issue :
8
Database :
Complementary Index
Journal :
Energy Technology
Publication Type :
Academic Journal
Accession number :
169810184
Full Text :
https://doi.org/10.1002/ente.202300338