Back to Search Start Over

The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton.

Authors :
Zhang, Yafei
Zhai, Yuqing
Min, Shiwei
Dou, Yihua
Source :
Materials (1996-1944); Jul2023, Vol. 16 Issue 14, p4933, 17p
Publication Year :
2023

Abstract

The performance of a multi-layer honeycomb skeleton can be significantly enhanced through tandem connection, while the structure's properties can be tailored by altering the layer stacking method of the honeycomb skeleton. To investigate the impact of layer stacking methods on the mechanical properties of multilayer honeycomb skeletons, 3D printing technology was used to prepare double-layer honeycomb skeleton tandem structures with different dislocation modes in compression testing. A finite element simulation model was established to conduct quasi-static simulation research. Compared to that of a single-layer honeycomb skeleton, the energy absorption of the honeycomb skeleton tandem structure increased. The optimal bearing capacity of the honeycomb skeleton was achieved when the upper and lower layers were precisely aligned. Once dislocation occurred, both the value of average platform stress and energy absorption decreased. Then, the bearing capacity of the honeycomb skeleton tandem structures increased with an enlargement of the dislocation, reaching its maximum at the half-dislocation period. An increase in the partition thickness and stiffness led to a reduction in the dislocation-induced effects on the mechanical properties. The research results can provide theoretical and data support for the engineering application of honeycomb skeleton tandem structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
14
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
169323812
Full Text :
https://doi.org/10.3390/ma16144933