Back to Search Start Over

Hierarchical Reinforcement Learning for Crude Oil Supply Chain Scheduling.

Authors :
Ma, Nan
Wang, Ziyi
Ba, Zeyu
Li, Xinran
Yang, Ning
Yang, Xinyi
Zhang, Haifeng
Source :
Algorithms; Jul2023, Vol. 16 Issue 7, p354, 20p
Publication Year :
2023

Abstract

Crude oil resource scheduling is one of the critical issues upstream in the crude oil industry chain. It aims to reduce transportation and inventory costs and avoid alerts of inventory limit violations by formulating reasonable crude oil transportation and inventory strategies. Two main difficulties coexist in this problem: the large problem scale and uncertain supply and demand. Traditional operations research (OR) methods, which rely on forecasting supply and demand, face significant challenges when applied to the complicated and uncertain short-term operational process of the crude oil supply chain. To address these challenges, this paper presents a novel hierarchical optimization framework and proposes a well-designed hierarchical reinforcement learning (HRL) algorithm. Specifically, reinforcement learning (RL), as an upper-level agent, is used to select the operational operators combined by various sub-goals and solving orders, while the lower-level agent finds a viable solution and provides penalty feedback to the upper-level agent based on the chosen operator. Additionally, we deploy a simulator based on real-world data and execute comprehensive experiments. Regarding the alert number, maximum alert penalty, and overall transportation cost, our HRL method outperforms existing OR and two RL algorithms in the majority of time steps. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994893
Volume :
16
Issue :
7
Database :
Complementary Index
Journal :
Algorithms
Publication Type :
Academic Journal
Accession number :
168601469
Full Text :
https://doi.org/10.3390/a16070354