Back to Search Start Over

Efficient Removal of Heavy Metals from Aqueous Solution Using Licorice Residue-Based Hydrogel Adsorbent.

Authors :
Yin, Xiaochun
Ke, Ting
Zhu, Hai
Xu, Pei
Wang, Huiyao
Source :
Gels (2310-2861); Jul2023, Vol. 9 Issue 7, p559, 21p
Publication Year :
2023

Abstract

The removal of heavy metals through adsorption represents a highly promising method. This study focuses on the utilization of an abundant cellulose-rich solid waste, licorice residue (LR), as a natural material for hydrogel synthesis. To this end, LR-EPI hydrogels, namely, LR-EPI-5, LR-EPI-6 and LR-EPI-8, were developed by crosslinking LR with epichlorohydrin (EPI), specifically targeting the removal of Pb, Cu, and Cr from aqueous solutions. Thorough characterizations employing Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy confirmed the successful crosslinking of LR-EPIs by EPI, resulting in the formation of porous and loosely structured hydrogels. Batch studies demonstrated the high efficacy of LR-EPI hydrogels in removing the three heavy metal ions from aqueous solutions. Notably, LR-EPI-8 exhibited the highest adsorption capacity, with maximum capacities of 591.8 mg/g, 458.3 mg/g, and 121.4 mg/g for Pb<superscript>2+</superscript>, Cr<superscript>3+</superscript>, and Cu<superscript>2+</superscript>, respectively. The adsorption processes for Pb<superscript>2+</superscript> and Cu<superscript>2+</superscript> were well described by pseudo-second-order kinetics and the Langmuir model. The adsorption mechanism of LR-EPI-8 onto heavy metal ions was found to involve a combination of ion-exchange and electrostatic interactions, as inferred from the results obtained through X-ray photoelectron spectroscopy and FTIR. This research establishes LR-EPI-8 as a promising adsorbent for the effective removal of heavy metal ions from aqueous solutions, offering an eco-friendly approach for heavy metal removal and providing an environmentally sustainable method for the reutilization of Chinese herb residues. It contributes to the goal of "from waste, treats waste" while also addressing the broader need for heavy metal remediation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23102861
Volume :
9
Issue :
7
Database :
Complementary Index
Journal :
Gels (2310-2861)
Publication Type :
Academic Journal
Accession number :
168589923
Full Text :
https://doi.org/10.3390/gels9070559