Back to Search Start Over

Multiple Heteroatom‐Hydrogen Bonds Bridging Electron Transport in Covalent Organic Framework‐Based Supramolecular System for Photoreduction of CO2.

Authors :
He, Yajun
Zhao, Yun
Wang, Xiaofeng
Liu, Zheyuan
Yu, Yan
Li, Liuyi
Source :
Angewandte Chemie International Edition; Aug2023, Vol. 62 Issue 31, p1-7, 7p
Publication Year :
2023

Abstract

Supramolecular systems consisting of covalent organic frameworks (COFs) and Ni complex are designed for robust photocatalytic reduction of CO2. Multiple heteroatom‐hydrogen bonding between the COF and Ni complex is identified to play a decisive role in the photoexcited electron transfer across the liquid‐solid interface. The diminution of steric groups on COF or metal complex can optimize catalytic performance, which is more attributable to the enhanced hydrogen‐bond interaction rather than their intrinsic activity. The photosystem with relatively strong strength of hydrogen bonds exhibits remarkable photocatalytic CO2‐to‐CO conversion, far superior to photosystems with supported atomic Ni or metal complex alone in the absence of hydrogen‐bond effect. Such heteroatom‐hydrogen bonds bridging electron transport pathway confers supramolecular system with high photocatalytic performance, providing an avenue to rationally design efficient and steadily available photosystems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
62
Issue :
31
Database :
Complementary Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
166735194
Full Text :
https://doi.org/10.1002/anie.202307160