Back to Search Start Over

Nanoformulations with exopolysaccharides from cyanobacteria: enhancing the efficacy of bioactive molecules in the Mediterranean fruit fly control.

Authors :
Falsini, Sara
Rosi, Marzia Cristiana
Ravegnini, Elia
Schiff, Silvia
Gonnelli, Cristina
Papini, Alessio
Adessi, Alessandra
Urciuoli, Silvia
Ristori, Sandra
Source :
Environmental Science & Pollution Research; Jul2023, Vol. 30 Issue 35, p83760-83770, 11p
Publication Year :
2023

Abstract

The increasing demand for food has required intensive use of pesticides which are hazardous to the ecosystem. A valid alternative is represented by biopesticides; however, these molecules are often insoluble in water, and poorly bioavailable. Nanopesticides can be engineered to reach a selected target with controlled release of the active principle. In this work, capsaicin, an irritant alkaloid from hot chili peppers, and hydroxytyrosol, a phenolic compound obtained from extra-virgin olive oil by-products, were loaded into innovative nanocarriers. These were designed ad hoc combining exopolysaccharides from the cyanobacteria Neocyanospira capsulata, and a lipid component, i.e., egg phosphatidylcholine. The polysaccharide was chosen for chemical affinity with the chitin of insect exoskeleton, while the lipids were introduced to modulate the carrier rigidity. The newly formed nanosystems were characterized by physico-chemical techniques and tested for their possible use in pest control programs. The Mediterranean Fruit Fly Ceratitis capitata Wiedemann, 1824 (Diptera, Tephriditae), a pest of the Mediterranean Region causing high economic losses, was used as a model insect. We found that the nanoformulations nanocarriers prepared in this work, were able to increase the ovicidal effect of hydroxytyrosol. Moreover, the formulation encapsulating either hydroxytyrosol or capsaicin were able to reduce the number of females landing on treated apricots. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
30
Issue :
35
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
165110764
Full Text :
https://doi.org/10.1007/s11356-023-28180-x