Back to Search Start Over

β-Cell function during a high-fat meal in young versus old adults: role of exercise.

Authors :
Malin, Steven K.
Frick, Hannah
Wisseman, William S.
Edwards, Elizabeth S.
Edwards, David A.
Emerson, Sam R.
Kurti, Stephanie P.
Source :
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology; Aug2023, Vol. 325 Issue 2, pR164-R171, 8p
Publication Year :
2023

Abstract

The acute effect of exercise on β-cell function during a high-fat meal (HFM) in young adults (YA) versus old adults (OA) is unclear. In this randomized crossover trial, YA (n = 5 M/7 F, 23.3 ± 3.9 yr) and OA (n = 8 M/4 F, 67.7 ± 6.0 yr) underwent a 180-min HFM (12 kcal/kg body wt; 57% fat, 37% CHO) after a rest or exercise [~65% heart rate peak (HR<subscript>peak</subscript>)] condition ~12 h earlier. After an overnight fast, plasma lipids, glucose, insulin, and free fatty acid (FFA) were determined to estimate peripheral, or skeletal muscle, insulin sensitivity (Matsuda index) as well as hepatic [homeostatic model assessment of insulin resistance (HOMA-IR)] and adipose insulin resistance (adipose-IR). β-Cell function was derived from C-peptide and defined as early-phase (0-30 min) and total-phase (0-180 min) disposition index [DI, glucose-stimulated insulin secretion (GSIS) adjusted for insulin sensitivity/resistance]. Hepatic insulin extraction (HIE), body composition [dual-energy X-ray absorptiometry (DXA)], and peak oxygen consumption (VO<subscript>2peak</subscript>) were also assessed. OA had higher total cholesterol (TC), LDL, HIE, and DI across organs as well as lower adipose-IR (all, P < 0.05) and VO<subscript>2peak</subscript> (P = 0.056) despite similar body composition and glucose tolerance. Exercise lowered early-phase TC and LDL in OA versus YA (P < 0.05). However, C-peptide area under the curve (AUC), total phase GSIS, and adipose-IR were reduced postexercise in YA versus OA (P < 0.05). Skeletal muscle DI increased in YA and OA after exercise (P < 0.05), whereas adipose DI tended to decline in OA (P = 0.06 and P = 0.08). Exercise-induced skeletal muscle insulin sensitivity (r = -0.44, P = 0.02) and total-phase DI (r = -0.65, P = 0.005) correlated with reduced glucose AUC<subscript>180min</subscript>. Together, exercise improved skeletal muscle insulin sensitivity/DI in relation to glucose tolerance in YA and OA, but only raised adipose-IR and reduced adipose-DI in OA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03636119
Volume :
325
Issue :
2
Database :
Complementary Index
Journal :
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology
Publication Type :
Academic Journal
Accession number :
165103822
Full Text :
https://doi.org/10.1152/ajpregu.00047.2023