Back to Search Start Over

Level crossings, attractor points and complex multiplication.

Authors :
Ahmed, Hamza
Ruehle, Fabian
Source :
Journal of High Energy Physics; Jun2023, Vol. 2023 Issue 6, p1-30, 30p
Publication Year :
2023

Abstract

We study the complex structure moduli dependence of the scalar Laplacian eigenmodes for one-parameter families of Calabi-Yau n-folds in ℙ<superscript>n+1</superscript>. It was previously observed that some eigenmodes get lighter while others get heavier as a function of these moduli, which leads to eigenvalue crossing. We identify the cause for this behavior for the torus. We then show that at points in a sublocus of complex structure moduli space where Laplacian eigenmodes cross, the torus has complex multiplication. We speculate that the generalization to arbitrary Calabi-Yau manifolds could be that level crossing is related to rank one attractor points. To test this, we compute the eigenmodes numerically for the quartic K3 and the quintic threefold, and match crossings to CM and attractor points in these varieties. To quantify the error of our numerical methods, we also study the dependence of the numerical spectrum on the quality of the Calabi-Yau metric approximation, the number of points sampled from the Calabi-Yau variety, the truncation of the eigenbasis, and the distance from degeneration points in complex structure moduli space. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
11266708
Volume :
2023
Issue :
6
Database :
Complementary Index
Journal :
Journal of High Energy Physics
Publication Type :
Academic Journal
Accession number :
165036577
Full Text :
https://doi.org/10.1007/JHEP06(2023)164