Back to Search Start Over

Landslide Recognition from Multi-Feature Remote Sensing Data Based on Improved Transformers.

Authors :
Huang, Renxiang
Chen, Tao
Source :
Remote Sensing; Jul2023, Vol. 15 Issue 13, p3340, 18p
Publication Year :
2023

Abstract

Efficient and accurate landslide recognition is crucial for disaster prevention and post-disaster rescue efforts. However, compared to machine learning, deep learning approaches currently face challenges such as long model runtimes and inefficiency. To tackle these challenges, we proposed a novel knowledge distillation network based on Swin-Transformer (Distilled Swin-Transformer, DST) for landslide recognition. We created a new landslide sample database and combined nine landslide influencing factors (LIFs) with remote sensing images (RSIs) to evaluate the performance of DST. Our approach was tested in Zigui County, Hubei Province, China, and our quantitative evaluation showed that the combined RSIs with LIFs improved the performance of the landslide recognition model. Specifically, our model achieved an Overall Accuracy (OA), Precision, Recall, F1-Score (F1), and Kappa that were 0.8381%, 0.6988%, 0.9334%, 0.8301%, and 0.0125 higher, respectively, than when using only RSIs. Compared with the results of other neural networks, namely ResNet50, Swin-Transformer, and DeiT, our proposed deep learning model achieves the best OA (98.1717%), Precision (98.1672%), Recall (98.1667%), F1 (98.1615%), and Kappa (0.9766). DST has the lowest number of FLOPs, which is crucial for improving computational efficiency, especially in landslide recognition applications after geological disasters. Our model requires only 2.83 GFLOPs, which is the lowest among the four models and is 1.8242 GFLOPs, 1.741 GFLOPs, and 2.0284 GFLOPs less than ResNet, Swin, and DeiT, respectively. The proposed method has good applicability in rapid recognition scenarios after geological disasters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
13
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164922253
Full Text :
https://doi.org/10.3390/rs15133340