Back to Search Start Over

Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods.

Authors :
Wang, Rui
Guo, Lanlan
Yang, Yuting
Zheng, Hao
Liu, Lianyou
Jia, Hong
Diao, Baijian
Liu, Jifu
Source :
Remote Sensing; Jul2023, Vol. 15 Issue 13, p3331, 20p
Publication Year :
2023

Abstract

The rapidly warming climate on the Qinghai–Tibet Plateau (QTP) leads to permafrost degradation, and the thawing of ice-rich permafrost induces land subsidence to facilitate the development of thermokarst lakes. Thermokarst lakes exacerbate the instability of permafrost, which significantly alters regional geomorphology and hydrology, affecting biogeochemical cycles. However, the spatial distribution and future changes in thermokarst lakes have rarely been assessed at large scales. In this study, we combined various conditioning factors and an inventory of thermokarst lakes to assess the spatial distribution of susceptibility maps using machine-learning algorithms. The results showed that the extremely randomized trees (EXT) performed the best in the susceptibility modeling process, followed by random forest (RF) and logistic regression (LR). According to the assessment based on EXT, the high- and very high-susceptibility area of the present (2000–2016) susceptibility map was 196,222 km<superscript>2</superscript>, covering 19.67% of the permafrost region of the QTP. In the future (the 2070s), the area of the susceptibility map was predicted to shrink significantly under various representative concentration pathway scenarios (RCPs). The susceptibility map area would be reduced to 37.06% of the present area in RCP 8.5. This paper also performed correlation and importance analysis on the conditioning factors and thermokarst lakes, which indicated that thermokarst lakes tended to form in areas with flat topography and high soil moisture. The uncertainty of the susceptibility map was further assessed by the coefficient of variation (CV). Our results demonstrate a way to study the spatial distribution of thermokarst lakes at the QTP scale and provide a scientific basis for understanding thermokarst processes in response to climate change. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
13
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164922244
Full Text :
https://doi.org/10.3390/rs15133331