Back to Search Start Over

Comparison of Differential Evolution and Nelder–Mead Algorithms for Identification of Line-Start Permanent Magnet Synchronous Motor Parameters.

Authors :
Paramonov, Aleksey
Oshurbekov, Safarbek
Kazakbaev, Vadim
Prakht, Vladimir
Dmitrievskii, Vladimir
Goman, Victor
Source :
Applied Sciences (2076-3417); Jul2023, Vol. 13 Issue 13, p7586, 16p
Publication Year :
2023

Abstract

Featured Application: The findings of this study can be applied in the design and experimental investigation of line-start permanent magnet motors. Line-start permanent magnet synchronous motors (LSPMSMs) are of great interest to researchers because of their high energy efficiency, due to the growing interest of manufacturers in energy-efficient units. However, LSPMSMs face some difficulties in starting and synchronization processes. The LSPMSM lumped parameter model is applicable to estimating the successfulness of starting and further synchronization. The parameters of such a model can be determined using computer-aided identification algorithms applied to real motor transient processes' curves. This problem demands significant computational time. A comparison between two algorithms, differential evolution and Nelder–Mead, is presented in this article. The algorithms were used for 0.55 kW, 1500 rpm LSPMSM parameter identification. Moreover, to increase computational speed, it is proposed to stop and restart the algorithms' procedures, changing their parameters after a certain number of iterations. A significant advantage of the Nelder–Mead algorithm is shown for the solving of the considered problem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
13
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
164921310
Full Text :
https://doi.org/10.3390/app13137586