Back to Search Start Over

Bearing Fault Diagnosis Method Based on Deep Learning and Health State Division.

Authors :
Shi, Lin
Su, Shaohui
Wang, Wanqiang
Gao, Shang
Chu, Changyong
Source :
Applied Sciences (2076-3417); Jul2023, Vol. 13 Issue 13, p7424, 24p
Publication Year :
2023

Abstract

As a key component of motion support, the rolling bearing is currently a popular research topic for accurate diagnosis of bearing faults and prediction of remaining bearing life. However, most existing methods still have difficulties in learning representative features from the raw data. In this paper, the Xi'an Jiaotong University (XJTU-SY) rolling bearing dataset is taken as the research object, and a deep learning technique is applied to carry out the bearing fault diagnosis research. The root mean square (RMS), kurtosis, and sum of frequency energy per unit acquisition period of the short-time Fourier transform are used as health factor indicators to divide the whole life cycle of bearings into two phases: the health phase and the fault phase. This division not only expands the bearing dataset but also improves the fault diagnosis efficiency. The Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN) network model is improved by introducing multi-scale large convolutional kernels and Gate Recurrent Unit (GRU) networks. The bearing signals with classified health states are trained and tested, and the training and testing process is visualized, then finally the experimental validation is performed for four failure locations in the dataset. The experimental results show that the proposed network model has excellent fault diagnosis and noise immunity, and can achieve the diagnosis of bearing faults under complex working conditions, with greater diagnostic accuracy and efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
13
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
164921148
Full Text :
https://doi.org/10.3390/app13137424