Back to Search Start Over

MCL1 Inhibition Overcomes the Aggressiveness Features of Triple-Negative Breast Cancer MDA-MB-231 Cells.

Authors :
Pratelli, Giovanni
Carlisi, Daniela
Di Liberto, Diana
Notaro, Antonietta
Giuliano, Michela
D'Anneo, Antonella
Lauricella, Marianna
Emanuele, Sonia
Calvaruso, Giuseppe
De Blasio, Anna
Source :
International Journal of Molecular Sciences; Jul2023, Vol. 24 Issue 13, p11149, 23p
Publication Year :
2023

Abstract

Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial–Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-κB, and GSK3β-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
13
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
164919735
Full Text :
https://doi.org/10.3390/ijms241311149