Back to Search
Start Over
A High Performance Reconfigurable Hardware Architecture for Lightweight Convolutional Neural Network.
- Source :
- Electronics (2079-9292); Jul2023, Vol. 12 Issue 13, p2847, 17p
- Publication Year :
- 2023
-
Abstract
- Since the lightweight convolutional neural network EfficientNet was proposed by Google in 2019, the series of models have quickly become very popular due to their superior performance with a small number of parameters. However, the existing convolutional neural network hardware accelerators for EfficientNet still have much room to improve the performance of the depthwise convolution, squeeze-and-excitation module and nonlinear activation functions. In this paper, we first design a reconfigurable register array and computational kernel to accelerate the depthwise convolution. Next, we propose a vector unit to implement the nonlinear activation functions and the scale operation. An exchangeable-sequence dual-computational kernel architecture is proposed to improve the performance and the utilization. In addition, the memory architectures are designed to complete the hardware accelerator for the above computing architecture. Finally, in order to evaluate the performance of the hardware accelerator, the accelerator is implemented based on Xilinx XCVU37P. The results show that the proposed accelerator can work at the main system clock frequency of 300 MHz with the DSP kernel at 600 MHz. The performance of EfficientNet-B3 in our architecture can reach 69.50 FPS and 255.22 GOPS. Compared with the latest EfficientNet-B3 accelerator, which uses the same FPGA development board, the accelerator proposed in this paper can achieve a 1.28-fold improvement of single-core performance and 1.38-fold improvement of performance of each DSP. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20799292
- Volume :
- 12
- Issue :
- 13
- Database :
- Complementary Index
- Journal :
- Electronics (2079-9292)
- Publication Type :
- Academic Journal
- Accession number :
- 164918330
- Full Text :
- https://doi.org/10.3390/electronics12132847