Back to Search Start Over

Flying Laboratory of Imaging Systems: Fusion of Airborne Hyperspectral and Laser Scanning for Ecosystem Research.

Authors :
Hanuš, Jan
Slezák, Lukáš
Fabiánek, Tomáš
Fajmon, Lukáš
Hanousek, Tomáš
Janoutová, Růžena
Kopkáně, Daniel
Novotný, Jan
Pavelka, Karel
Pikl, Miroslav
Zemek, František
Homolová, Lucie
Source :
Remote Sensing; Jun2023, Vol. 15 Issue 12, p3130, 17p
Publication Year :
2023

Abstract

Synergies of optical, thermal and laser scanning remotely sensed data provide valuable information to study the structure and functioning of terrestrial ecosystems. One of the few fully operational airborne multi-sensor platforms for ecosystem research in Europe is the Flying Laboratory of Imaging Systems (FLIS), operated by the Global Change Research Institute of the Czech Academy of Sciences. The system consists of three commercial imaging spectroradiometers. One spectroradiometer covers the visible and near-infrared, and the other covers the shortwave infrared part of the electromagnetic spectrum. These two provide full spectral data between 380–2450 nm, mainly for the assessment of biochemical properties of vegetation, soil and water. The third spectroradiometer covers the thermal long-wave infrared part of the electromagnetic spectrum and allows for mapping of surface emissivity and temperature properties. The fourth instrument onboard is the full waveform laser scanning system, which provides data on landscape orography and 3D structure. Here, we describe the FLIS design, data acquisition plan and primary data pre-processing. The synchronous acquisition of multiple data sources provides a complex analytical and data framework for the assessment of vegetation ecosystems (such as plant species composition, plant functional traits, biomass and carbon stocks), as well as for studying the role of greenery or blue-green infrastructure on the thermal behaviour of urban systems. In addition, the FLIS airborne infrastructure supports calibration and validation activities for existing and upcoming satellite missions (e.g., FLEX, PRISMA). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
12
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164702314
Full Text :
https://doi.org/10.3390/rs15123130