Back to Search Start Over

Temporal evolution of microstructure and its influence on micromechanical and tribological properties of Stellite-6 cladding under aging treatment.

Authors :
Xiong, Jiankun
Guo, Yang
Nie, Fuheng
Mao, Guijun
Yang, Jianping
Zhou, Qinghua
Zhu, Hao
Li, Xia
Source :
Journal of Materials Science; Jul2023, Vol. 58 Issue 26, p10802-10820, 19p, 2 Color Photographs, 4 Black and White Photographs, 3 Charts, 6 Graphs, 4 Maps
Publication Year :
2023

Abstract

The degradation of components resulted from wear is unavoidable in service, which could be partly solved by applying surface treatment technique. Stellite-6 cobalt-based alloy is considered as a potential cladding material to improve the wear resistance of base materials owing to its excellent hardness and strength. The microstructural evolution and local mechanical properties of Co-rich matrix and Cr-rich eutectic carbide of Stellite-6 cladding with different aging times at 900 °C are investigated by optical microscopy, field emission scanning electron microscope and nanoindentation testing. The tribological characteristics of the matrix and eutectic carbide itself are systematically investigated using the single-pass nano-scratch testing. In the matrix region, the carbide precipitations occur after 5 h and coarsens after 10 h aging. The nanoindentation results indicate that the hardness of the matrix regions is significantly increased due to the presence of dispersed carbide and fine stripe-like precipitations. The nano-scratch tests depict that the wear resistance is improved with higher matrix hardness to support eutectic carbide based on aging treatment. Potential improvement on tribological performance through the aging treatment procedure is proved based on the micromechanical and wear behaviors of matrix and eutectic carbide were identified. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00222461
Volume :
58
Issue :
26
Database :
Complementary Index
Journal :
Journal of Materials Science
Publication Type :
Academic Journal
Accession number :
164679249
Full Text :
https://doi.org/10.1007/s10853-023-08690-2