Back to Search
Start Over
A quantitative assessment of deformation energy in intermolecular interactions: How important is it?
- Source :
- Journal of Chemical Physics; 6/28/2023, Vol. 158 Issue 24, p1-13, 13p
- Publication Year :
- 2023
-
Abstract
- Dimer interaction energies have been well studied in computational chemistry, but they can offer an incomplete understanding of molecular binding depending on the system. In the current study, we present a dataset of focal-point coupled-cluster interaction and deformation energies (summing to binding energies, D<subscript>e</subscript>) of 28 organic molecular dimers. We use these highly accurate energies to evaluate ten density functional approximations for their accuracy. The best performing method (with a double-ζ basis set), B97M-D3BJ, is then used to calculate the binding energies of 104 organic dimers, and we analyze the influence of the nature and strength of interaction on deformation energies. Deformation energies can be as large as 50% of the dimer interaction energy, especially when hydrogen bonding is present. In most cases, two or more hydrogen bonds present in a dimer correspond to an interaction energy of −10 to −25 kcal mol<superscript>−1</superscript>, allowing a deformation energy above 1 kcal mol<superscript>−1</superscript> (and up to 9.5 kcal mol<superscript>−1</superscript>). A lack of hydrogen bonding usually restricts the deformation energy to below 1 kcal mol<superscript>−1</superscript> due to the weaker interaction energy. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 158
- Issue :
- 24
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 164665445
- Full Text :
- https://doi.org/10.1063/5.0155895