Back to Search Start Over

Spatial Effects Analysis on Individual-Tree Aboveground Biomass in a Tropical Pinus kesiya var. langbianensis Natural Forest in Yunnan, Southwestern China.

Authors :
Zhang, Xilin
Chen, Guoqi
Liu, Chunxiao
Fan, Qinling
Li, Wenfang
Wu, Yong
Xu, Hui
Ou, Guanglong
Source :
Forests (19994907); Jun2023, Vol. 14 Issue 6, p1177, 23p
Publication Year :
2023

Abstract

It is essential to analyze the spatial autocorrelation and heterogeneity of aboveground biomass (AGB). But it is difficult to accurately describe due to the lack of data in clear-cutting plots. Thus, measuring the AGB directly in a clear-cutting plot can provide a reference for accurately describing the spatial variation. Therefore, a 0.3-hectare clear-cutting sample plot of Pinus kesiya var. langbianensis natural forest was selected, and the AGB was calculated by each component. The intra-group variance was quantitatively described in terms of spatial heterogeneity, and the spatial autocorrelation was explored by global and local Moran's I. The results indicated that (1) there was different spatial heterogeneity for the different trees and organs. The intra-group variance tended to be stable after 20 m for P. kesiya var. langbianensis (PK) and other upper trees (UPs) and after 10 m for the other lower trees (LTs). (2) The spatial autocorrelation of AGB and wood biomass was similar, while the bark biomass and foliage biomass were consistent. PK and other UPs also exhibited strong spatial autocorrelation, with maximum Moran's I values of 0.1537 and 0.1644, respectively. (3) There was spatial heterogeneity in the different components except for the bark of PK. The lowest spatial heterogeneity was found for LT. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994907
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Forests (19994907)
Publication Type :
Academic Journal
Accession number :
164649952
Full Text :
https://doi.org/10.3390/f14061177