Back to Search Start Over

Characteristics of Boomerang Whistler‐Mode Waves Emitted From the DSX Spacecraft.

Authors :
Starks, M. J.
Lauben, D. S.
Albert, J. M.
Farrell, W. M.
Galkin, I. A.
Ginet, G. P.
Inan, U. S.
Johnston, W. R.
Linscott, I. R.
Sanchez, J. C.
Song, P.
Tu, J.
Source :
Journal of Geophysical Research. Space Physics; Jun2023, Vol. 128 Issue 6, p1-18, 18p
Publication Year :
2023

Abstract

The Air Force Research Laboratory's Demonstration and Science Experiments (DSX) spacecraft carried a high‐voltage very low frequency transmitter and a sensitive broadband receiver to medium Earth orbit in 2019. During many pulsed transmission experiments, DSX detected apparent "boomerang" echoes when its emitted waves refracted in the magnetosphere and returned to the spacecraft. We simulated a series of these detected pulses using cold plasma ray tracing to characterize their likely wavelengths, indices of refraction, and initial wave normal angles. The waves were shown to remain relatively local to DSX, to be lightly damped, and to have a wide variety of wavelengths and indices of refraction, but they were all emitted with very oblique wave normal angles tightly clustered about half a degree from the Gendrin angle, which theoretical antenna models predict is preferentially excited. Our results are remarkably consistent with this prediction but are statistically biased closer to the resonance cone, possibly because of limitations in the ray tracing technique. The result is robust to perturbations of the simulation and confirms a very narrow beam of oblique radiation quite unlike the behavior of a dipole in vacuo. Key Points: The Demonstration and Science Experiments (DSX) very low frequency transmitter emitted waves that returned to the spacecraft via magnetospheric reflectionRay tracing analysis indicates that the waves have initial wave normal angles near the Gendrin angle and the cold plasma resonance coneThe results are consistent with current theoretical treatments of the DSX antenna [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21699380
Volume :
128
Issue :
6
Database :
Complementary Index
Journal :
Journal of Geophysical Research. Space Physics
Publication Type :
Academic Journal
Accession number :
164633287
Full Text :
https://doi.org/10.1029/2023JA031300