Back to Search
Start Over
Non-Crossing Frameworks with Non-Crossing Reciprocals.
- Source :
- Discrete & Computational Geometry; Nov2004, Vol. 32 Issue 4, p567-600, 100p
- Publication Year :
- 2004
-
Abstract
- We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks G whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the stress on G; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that for such pseudo-triangulation embeddings of planar Laman circuits which are sufficiently generic, the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation Laman circuits. All self-stresses on a planar graph correspond to liftings to piecewise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs. [ABSTRACT FROM AUTHOR]
- Subjects :
- TRIANGULATION
AERIAL triangulation
LEAST squares
SATELLITE triangulation
Subjects
Details
- Language :
- English
- ISSN :
- 01795376
- Volume :
- 32
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Discrete & Computational Geometry
- Publication Type :
- Academic Journal
- Accession number :
- 16439459