Back to Search Start Over

Electronic structures and Aharonov–Bohm effect in higher-order topological Dirac Semimetal nanoribbons with strong confinements.

Authors :
Du, Yan
Tang, Shunxi
Tan, Han
Liu, Zhengfang
Wu, Qingping
Zhou, Xiaoying
Xiao, Xianbo
Source :
New Journal of Physics; Jun2023, Vol. 25 Issue 6, p1-12, 12p
Publication Year :
2023

Abstract

Electronic structures and magnetotransport properties of topological Dirac semimetal (TDSM) nanoribbons are studied by adopting the tight-binding lattice model and the Landauer–Büttiker formula based on the non-equilibrium Green's function. For concreteness, the TDSM material Cd<subscript>3</subscript>As<subscript>2</subscript> grown along the experimentally accessible [110] crystallographic direction is taken as an example. We found that the electronic structures of the TDSM nanoribbon depend on both the strength and direction of the magnetic field (MF). The transversal local charge density (LCD) distribution of the electronic states in the TDSM nanoribbon is moved gradually from the center toward the hinge of each surface as a [010] direction MF strength is increased, forming the two-sided hinge states. However, one-sided surface states are generated in the TDSM nanoribbon when a [001] direction MF is applied. As a result, one-sided hinge states can be achieved once a tilted MF is placed to the TDSM nanoribbon. The underlying physical mechanism of the desired one-sided hinge states is attributed to both the orbital and Zeeman effects of the MF, which is given by analytical analyses. In addition, typical Aharonov–Bohm interference patterns are observed in the charge conductance of the two-terminal TDSM nanoribbon with a tilted MF. This conductance behaviour originates from the unique interfering loop shaped by the one-sided hinge states. These findings may not only further our understanding on the external-field-induced higher-order (HO) topological phases but also provide an alternative method to probe the HO boundary states. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13672630
Volume :
25
Issue :
6
Database :
Complementary Index
Journal :
New Journal of Physics
Publication Type :
Academic Journal
Accession number :
164343978
Full Text :
https://doi.org/10.1088/1367-2630/acdab3