Back to Search Start Over

Estimation of geomechanical rock characteristics from specific energy data using combination of wavelet transform with ANFIS-PSO algorithm.

Authors :
Mohammadi Behboud, Mohammad
Ramezanzadeh, Ahmad
Tokhmechi, Behzad
Mehrad, Mohammad
Davoodi, Shadfar
Source :
Journal of Petroleum Exploration & Production Technology; Aug2023, Vol. 13 Issue 8, p1715-1740, 26p
Publication Year :
2023

Abstract

The geomechanical characteristics of a drill formation are uncontrollable factors that are crucial to determining the optimal controllable parameters for a drilling operation. In the present study, data collected in wells drilled in the Marun oilfield of southwestern Iran were used to develop adaptive network-based fuzzy inference system (ANFIS) models of geomechanical parameters. The drilling specific energy (DSE) of the formation was calculated using drilling parameters such as weight-on-bit (WOB), rate of penetration (ROP), rotational speed of drilling string (RPM), torque, bit section area, bit hydraulic factor, and bit hydraulic power. A stationary wavelet transform was subsequently used to decompose the DSE signal to the fourth level. The approximation values and details of each level served as inputs for ANFIS models using particle swarm optimization (PSO) algorithm and genetic algorithm (GA). As model outputs, the Young's Modulus, uniaxial compressive strength (UCS), cohesion coefficient, Poisson's ratio, and internal friction angle were compared to the geomechanical parameters obtained from petrophysical logs using laboratory-developed empirical relationships. Both models predicted the Young's modulus, UCS, and cohesion coefficient with high accuracy, but lacked accuracy in predicting the internal friction angle and Poisson's ratio. The root mean square error (RMSE) and determination coefficient (R<superscript>2</superscript>) were lower for the ANFIS-PSO model than for the ANFIS-GA model, indicating that the ANFIS-PSO model presents higher accuracy and better generalization capability than the ANFIS-GA model. As drilling parameters are readily available, the proposed method can provide valuable information for strategizing a drilling operation in the absence of petrophysical logs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21900558
Volume :
13
Issue :
8
Database :
Complementary Index
Journal :
Journal of Petroleum Exploration & Production Technology
Publication Type :
Academic Journal
Accession number :
164275582
Full Text :
https://doi.org/10.1007/s13202-023-01644-z