Back to Search Start Over

Rh Nanoparticles Dispersed on ZrO2–CeO2 Migrate to Al2O3 Supports to Mitigate Thermal Deactivation via Encapsulation.

Authors :
Machida, Masato
Yoshida, Hideto
Kamiuchi, Naoto
Fujino, Yasuhiro
Miki, Takeshi
Haneda, Masaaki
Tsurunari, Yutaro
Iwashita, Shundai
Ohta, Rion
Yoshida, Hiroshi
Ohyama, Junya
Source :
ACS Applied Nano Materials; 6/9/2023, Vol. 6 Issue 11, p9805-9815, 11p
Publication Year :
2023

Abstract

Full-scale monolithic three-way catalysts (TWCs) comprising Rh, oxygen-scavenging ZrO<subscript>2</subscript>–CeO<subscript>2</subscript> (ZC), and γ-Al<subscript>2</subscript>O<subscript>3</subscript> as a binder component were studied after real engine aging. The fatal irreversible deactivation that occurred under stoichiometric-lean-rich perturbation at 1000 °C for 40 h (SLR aging) was attributed to the complete encapsulation of Rh nanoparticles by ZC, leading to the physical blockage of gas adsorption. Preaging the catalyst under a rich condition at 1000 °C for 40 h (R aging) drastically mitigated this deactivation, i.e., the catalyst with R–SLR combined aging sustained its catalytic performance much better than the catalyst with SLR aging at the same temperature (1000 °C) and total time (80 h). X-ray mapping and high-temperature environmental electron microscopic analyses suggested that R aging promoted the migration of Rh nanoparticles across the ZC surface toward the boundary with the Al<subscript>2</subscript>O<subscript>3</subscript> binder. Owing to the strong bonding with the Al<subscript>2</subscript>O<subscript>3</subscript> surface, Rh nanoparticles were trapped at or near the boundary. Consequently, these Rh nanoparticles were unlikely to be fully covered by ZC even under the SLR aging condition because the encapsulation was induced through repetitive oxygen release/storage cycles at the Rh/ZC interface. Thus, we propose that Rh nanoparticles in contact with ZC and Al<subscript>2</subscript>O<subscript>3</subscript> played crucial roles to hinder the encapsulation caused by SLR aging at 1000 °C. Rh nanoparticles supported on the dual-oxide support of ZC and Al<subscript>2</subscript>O<subscript>3</subscript> were subjected to engine aging and chassis dynamometer tests. The deterioration extents of the TWC and oxygen storage capacity performances were successfully mitigated using this dual-oxide support formulation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25740970
Volume :
6
Issue :
11
Database :
Complementary Index
Journal :
ACS Applied Nano Materials
Publication Type :
Academic Journal
Accession number :
164243864
Full Text :
https://doi.org/10.1021/acsanm.3c01535