Back to Search
Start Over
Triggering Mixed Cationic‐Anionic Redox in Cu2‐xSe Cathodes via Tailored Charge‐Carrier for High Energy Density Aqueous Zn Batteries.
- Source :
- Advanced Energy Materials; 6/9/2023, Vol. 13 Issue 22, p1-10, 10p
- Publication Year :
- 2023
-
Abstract
- The further application of promising transition‐metal chalcogenides (TMCs) cathodes in dilute neutral aqueous Zn batteries (AZBs) is mainly plagued by unsatisfactory working voltages (usually <1 V vs Zn2+/Zn) and their conventional cationic redox centers reaching theoretical capacity limit. Hence, to break the confinement, a novel Zn‐Cu2‐xSe battery is developed in dilute neutral‐aqueous electrolyte by introducing a tailored charge‐carrier, which not only alters the intercalation potential of ions embedded into Cu2‐xSe (vs Zn2+/Zn, working voltage from ≈0.4 to ≈1.2 V) but also activates the anionic redox centers of Cu2‐xSe (capacity release from 143.4 to 323.2 mAh g−1 at 0.4 A g−1). In situ synchrotron X‐ray diffraction (SXRD) and substantial ex situ characterizations reveal the multi‐step phase conversion undergone by cathode and triggered additional Se‐based anionic (Sen2−/Se2−) reversible redox reaction. A multi‐electron synergistic transfer process established on the cationic‐anionic redox centers circumvents the slow relaxation of single‐ion charge compensation achieving high‐capacity and enhanced ion diffusion kinetics. As a result, an extraordinary energy density of up to 406.2 Wh kg−1 at 240 W kg−1 is implemented (calculated based on the mass of Cu2‐xSe cathode), which is ≈8.4 times higher than that of conventional Zn‐Cu2‐xSe batteries, representing an advanced development toward energetic AZBs. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16146832
- Volume :
- 13
- Issue :
- 22
- Database :
- Complementary Index
- Journal :
- Advanced Energy Materials
- Publication Type :
- Academic Journal
- Accession number :
- 164232381
- Full Text :
- https://doi.org/10.1002/aenm.202300236