Back to Search Start Over

Preference-Aware Light Graph Convolution Network for Social Recommendation.

Authors :
Xu, Haoyu
Wu, Guodong
Zhai, Enting
Jin, Xiu
Tu, Lijing
Source :
Electronics (2079-9292); Jun2023, Vol. 12 Issue 11, p2397, 19p
Publication Year :
2023

Abstract

Social recommendation systems leverage the abundant social information of users existing in the current Internet to mitigate the problem of data sparsity, ultimately enhancing recommendation performance. However, most existing recommendation systems that introduce social information ignore the negative messages passed by high-order neighbor nodes and aggregate messages without filtering, which results in a decline in the performance of the recommendation system. Considering this problem, we propose a novel social recommendation model based on graph neural networks (GNNs) called the preference-aware light graph convolutional network (PLGCN), which contains a subgraph construction module using unsupervised learning to classify users according to their embeddings and then assign users with similar preferences to a subgraph to filter useless or even negative messages from users with different preferences to attain even better recommendation performance. We also designed a feature aggregation module to better combine user embeddings with social and interaction information. In addition, we employ a lightweight GNN framework to aggregate messages from neighbors, removing nonlinear activation and feature transformation operations to alleviate the overfitting problem. Finally, we carried out comprehensive experiments using two publicly available datasets, and the results indicate that PLGCN outperforms the current state-of-the-art (SOTA) method, especially in dealing with the problem of cold start. The proposed model has the potential for practical applications in online recommendation systems, such as e-commerce, social media, and content recommendation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
12
Issue :
11
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
164215566
Full Text :
https://doi.org/10.3390/electronics12112397