Back to Search Start Over

Raw Data Simulation of Spaceborne Synthetic Aperture Radar with Accurate Range Model.

Authors :
Li, Haisheng
An, Junshe
Jiang, Xiujie
Lin, Meiyan
Source :
Remote Sensing; Jun2023, Vol. 15 Issue 11, p2705, 23p
Publication Year :
2023

Abstract

Simulated raw data have become an essential tool for testing and assessing system parameters and imaging performance due to the high cost and limited availability of real raw data from spaceborne synthetic aperture radar (SAR). However, with increasing resolution and higher orbit altitudes, existing simulation methods fail to generate SAR simulated raw data that closely resemble real raw data. This is due to approximations such as curved orbits, "stop-and-go" assumption, and Earth's rotation, among other factors. To overcome these challenges, this paper presents an accurate range model with a "nonstop-and-go" configuration for raw data simulation based on existing time-domain simulation methods. We model the SAR echo signal and establish a precise space geometry for spaceborne SAR. Additionally, we precisely identify the target illumination area based on elliptical beams through space coordinate transformation. Finally, the SAR raw data were accurately simulated using high-precision time-domain simulation methods. The accuracy of the proposed model was validated by comparing it with the traditional hyperbolic model and the curved orbit model with "stop-and-go" assumption through image processing of the generated raw data. Through the analysis of point target quality parameters, the errors of various parameters in our distance model compared with the other two models are within 1%. Furthermore, this simulation method can be adapted to simulate raw data of other modes and satellite orbits by adjusting beam control and satellite orbit parameters, respectively. The proposed simulation method demonstrated high accuracy and versatility, thereby providing a valuable contribution to the development of remote sensing technology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
11
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164213042
Full Text :
https://doi.org/10.3390/rs15112705