Back to Search Start Over

Engineering the glass structure of a discotic liquid crystal by multiple kinetic arrests.

Authors :
Yu, Junguang
Chen, Zhenxuan
Fatina, Caroline
Chatterjee, Debaditya
Bock, Harald
Richert, Ranko
Voyles, Paul
Ediger, M. D.
Yu, Lian
Source :
Journal of Chemical Physics; 5/28/2023, Vol. 158 Issue 20, p1-9, 9p
Publication Year :
2023

Abstract

X-ray scattering has been used to characterize the columnar packing and the π stacking in a glass-forming discotic liquid crystal. In the equilibrium liquid state, the intensities of the scattering peaks for π stacking and columnar packing are proportional to each other, indicating concurrent development of the two orders. Upon cooling into the glassy state, the π–π distance shows a kinetic arrest with a change in the thermal expansion coefficient (TEC) from 321 to 109 ppm/K, while the intercolumnar spacing exhibits a constant TEC of 113 ppm/K. By changing the cooling rate, it is possible to prepare glasses with a wide range of columnar and π stacking orders, including zero order. For each glass, the columnar order and the π stacking order correspond to a much hotter liquid than its enthalpy and π–π distance, with the difference between the two internal (fictive) temperatures exceeding 100 K. By comparison with the relaxation map obtained by dielectric spectroscopy, we find that the δ mode (disk tumbling within a column) controls the columnar order and the π stacking order trapped in the glass, while the α mode (disk spinning about its axis) controls the enthalpy and the π–π spacing. Our finding is relevant for controlling the different structural features of a molecular glass to optimize its properties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
158
Issue :
20
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
164087945
Full Text :
https://doi.org/10.1063/5.0149886