Back to Search Start Over

Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2.

Authors :
Giannetti, Federica
Barbieri, Miriam
Shiti, Assad
Casini, Simona
Sager, Philip T
Das, Saumya
Pradhananga, Sabindra
Srinivasan, Dinesh
Nimani, Saranda
Alerni, Nicolò
Louradour, Julien
Mura, Manuela
Gnecchi, Massimiliano
Brink, Paul
Zehender, Manfred
Koren, Gideon
Zaza, Antonio
Crotti, Lia
Wilde, Arthur A M
Schwartz, Peter J
Source :
EP: Europace; May2023, Vol. 25 Issue 5, p1-12, 12p
Publication Year :
2023

Abstract

Aims Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. Methods and results Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM–10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2 -p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3–10 µM (by 20–32%/25–30%/44–45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1 -p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1 -p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1 -p.A341V hiPSC-CMs or KCNQ1 -p.Y315S rabbit CMs at 0.3–3 µM. Conclusion A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10995129
Volume :
25
Issue :
5
Database :
Complementary Index
Journal :
EP: Europace
Publication Type :
Academic Journal
Accession number :
164083522
Full Text :
https://doi.org/10.1093/europace/euad094