Back to Search Start Over

Improved weed mapping in corn fields by combining UAV‐based spectral, textural, structural, and thermal measurements.

Authors :
Xu, Binyuan
Meng, Ran
Chen, Gengshen
Liang, Linlin
Lv, Zhengang
Zhou, Longfei
Sun, Rui
Zhao, Feng
Yang, Wanneng
Source :
Pest Management Science; Jul2023, Vol. 79 Issue 7, p2591-2602, 12p
Publication Year :
2023

Abstract

BACKGROUND: Spatial‐explicit weed information is critical for controlling weed infestation and reducing corn yield losses. The development of unmanned aerial vehicle (UAV)‐based remote sensing presents an unprecedented opportunity for efficient, timely weed mapping. Spectral, textural, and structural measurements have been used for weed mapping, whereas thermal measurements—for example, canopy temperature (CT)—were seldom considered and used. In this study, we quantified the optimal combination of spectral, textural, structural, and CT measurements based on different machine‐learning algorithms for weed mapping. RESULTS: CT improved weed‐mapping accuracies as complementary information for spectral, textural, and structural features (up to 5% and 0.051 improvements in overall accuracy [OA] and Marco‐F1, respectively). The fusion of textural, structural, and thermal features achieved the best performance in weed mapping (OA = 96.4%, Marco‐F1 = 0.964), followed by the fusion of structural and thermal features (OA = 93.6%, Marco‐F1 = 0.936). The Support Vector Machine‐based model achieved the best performance in weed mapping, with 3.5% and 7.1% improvements in OA and 0.036 and 0.071 in Marco‐F1 respectively, compared with the best models of Random Forest and Naïve Bayes Classifier. CONCLUSION: Thermal measurement can complement other types of remote‐sensing measurements and improve the weed‐mapping accuracy within the data‐fusion framework. Importantly, integrating textural, structural, and thermal features achieved the best performance for weed mapping. Our study provides a novel method for weed mapping using UAV‐based multisource remote sensing measurements, which is critical for ensuring crop production in precision agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1526498X
Volume :
79
Issue :
7
Database :
Complementary Index
Journal :
Pest Management Science
Publication Type :
Academic Journal
Accession number :
164066179
Full Text :
https://doi.org/10.1002/ps.7443