Back to Search Start Over

Bounds for invariants of numerical semigroups and Wilf’s conjecture.

Authors :
D’Anna, Marco
Moscariello, Alessio
Source :
Mathematische Zeitschrift; Jun2023, Vol. 304 Issue 2, p1-5, 5p
Publication Year :
2023

Abstract

Given coprime positive integers g 1 < … < g e , the Frobenius number F = F (g 1 , … , g e) is the largest integer not representable as a linear combination of g 1 , … , g e with non-negative integer coefficients. Let n denote the number of all representable non-negative integers less than F; Wilf conjectured that F + 1 ≤ e n . We provide bounds for g 1 and for the type of the numerical semigroup S = ⟨ g 1 , … , g e ⟩ in function of e and n, and use these bounds to prove that F + 1 ≤ q e n , where q = ⌈ F + 1 g 1 ⌉ , and F + 1 ≤ e n 2 . Finally, we give an alternative, simpler proof for the Wilf conjecture if the numerical semigroup S = ⟨ g 1 , … , g e ⟩ is almost-symmetric. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00255874
Volume :
304
Issue :
2
Database :
Complementary Index
Journal :
Mathematische Zeitschrift
Publication Type :
Academic Journal
Accession number :
163998317
Full Text :
https://doi.org/10.1007/s00209-023-03295-6