Back to Search Start Over

Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem.

Authors :
Hayat, Iqbal
Tariq, Adnan
Shahzad, Waseem
Masud, Manzar
Ahmed, Shahzad
Ali, Muhammad Umair
Zafar, Amad
Source :
Systems; May2023, Vol. 11 Issue 5, p221, 17p
Publication Year :
2023

Abstract

Permutation flow-shop scheduling is the strategy that ensures the processing of jobs on each subsequent machine in the exact same order while optimizing an objective, which generally is the minimization of makespan. Because of its NP-Complete nature, a substantial portion of the literature has mainly focused on computational efficiency and the development of different AI-based hybrid techniques. Particle Swarm Optimization (PSO) has also been frequently used for this purpose in the recent past. Following the trend and to further explore the optimizing capabilities of PSO, first, a standard PSO was developed during this research, then the same PSO was hybridized with Variable Neighborhood Search (PSO-VNS) and later on with Simulated Annealing (PSO-VNS-SA) to handle Permutation Flow-Shop Scheduling Problems (PFSP). The effect of hybridization was validated through an internal comparison based on the results of 120 different instances devised by Taillard with variable problem sizes. Moreover, further comparison with other reported hybrid metaheuristics has proved that the hybrid PSO (HPSO) developed during this research performed exceedingly well. A smaller value of 0.48 of ARPD (Average Relative Performance Difference) for the algorithm is evidence of its robust nature and significantly improved performance in optimizing the makespan as compared to other algorithms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20798954
Volume :
11
Issue :
5
Database :
Complementary Index
Journal :
Systems
Publication Type :
Academic Journal
Accession number :
163985650
Full Text :
https://doi.org/10.3390/systems11050221