Back to Search Start Over

THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION.

Authors :
Efiyanti, L.
Saputra, N. A.
Indrawan, D. A.
Winarni, I.
Pranoto, B.
Hastuti, N.
Fadhlulloh, Z.
Rahayuningsih, Y.
Wibowo, S.
Darmawan, S.
Yuniawati
Gusmailina
Komarayati, S.
Hendra, D.
Pari, G.
Source :
Rasayan Journal of Chemistry; Jan-Mar2023, Vol. 16 Issue 1, p38-47, 10p
Publication Year :
2023

Abstract

Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for a-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5-93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2/g, 661.166 m²/g, and 684.852 m²/g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09741496
Volume :
16
Issue :
1
Database :
Complementary Index
Journal :
Rasayan Journal of Chemistry
Publication Type :
Academic Journal
Accession number :
163816234
Full Text :
https://doi.org/10.31788/RJC.2023.1618126