Back to Search Start Over

Extracellular vesicles from iPSC-MSCs alleviate chemotherapy-induced mouse ovarian damage via the ILK-PI3K/AKT pathway.

Authors :
Rui-Can Cao
Yue Lv
Gang Lu
Hong-Bin Liu
Wuming Wang
Chunlai Tan
Xian-Wei Su
Zhiqiang Xiong
Jin-Long Ma
Wai-Yee Chan
Source :
Zoological Research; 2023, Vol. 44 Issue 3, p620-635, 16p
Publication Year :
2023

Abstract

Chemotherapy can significantly reduce follicle counts in ovarian tissues and damage ovarian stroma, causing endocrine disorder, reproductive dysfunction, and primary ovarian insufficiency (POI). Recent studies have suggested that extracellular vesicles (EVs) secreted from mesenchymal stem cells (MSCs) exert therapeutic effects in various degenerative diseases. In this study, transplantation of EVs from human induced pluripotent stem cell-derived MSCs (iPSC-MSC-EVs) resulted in significant restoration of ovarian follicle numbers, improved granulosa cell proliferation, and inhibition of apoptosis in chemotherapy-damaged granulosa cells, cultured ovaries, and in vivo ovaries in mice. Mechanistically, treatment with iPSC-MSC-EVs resulted in up-regulation of the integrinlinked kinase (ILK) -PI3K/AKT pathway, which is suppressed during chemotherapy, most likely through the transfer of regulatory microRNAs (miRNAs) targeting ILK pathway genes. This work provides a framework for the development of advanced therapeutics to ameliorate ovarian damage and POI in female chemotherapy patients. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20958137
Volume :
44
Issue :
3
Database :
Complementary Index
Journal :
Zoological Research
Publication Type :
Academic Journal
Accession number :
163730934
Full Text :
https://doi.org/10.24272/j.issn.2095-8137.2022.340