Back to Search Start Over

MMST: A Multi-Modal Ground-Based Cloud Image Classification Method.

Authors :
Wei, Liang
Zhu, Tingting
Guo, Yiren
Ni, Chao
Source :
Sensors (14248220); May2023, Vol. 23 Issue 9, p4222, 17p
Publication Year :
2023

Abstract

In recent years, convolutional neural networks have been in the leading position for ground-based cloud image classification tasks. However, this approach introduces too much inductive bias, fails to perform global modeling, and gradually tends to saturate the performance effect of convolutional neural network models as the amount of data increases. In this paper, we propose a novel method for ground-based cloud image recognition based on the multi-modal Swin Transformer (MMST), which discards the idea of using convolution to extract visual features and mainly consists of an attention mechanism module and linear layers. The Swin Transformer, the visual backbone network of MMST, enables the model to achieve better performance in downstream tasks through pre-trained weights obtained from the large-scale dataset ImageNet and can significantly shorten the transfer learning time. At the same time, the multi-modal information fusion network uses multiple linear layers and a residual structure to thoroughly learn multi-modal features, further improving the model's performance. MMST is evaluated on the multi-modal ground-based cloud public data set MGCD. Compared with the state-of-art methods, the classification accuracy rate reaches 91.30%, which verifies its validity in ground-based cloud image classification and proves that in ground-based cloud image recognition, models based on the Transformer architecture can also achieve better results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
9
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
163722875
Full Text :
https://doi.org/10.3390/s23094222