Back to Search Start Over

An Isoxazoloquinone Derivative Inhibits Tumor Growth by Targeting STAT3 and Triggering Its Ubiquitin-Dependent Degradation.

Authors :
Xie, Yuanzhu
Zhu, Shuaiwen
Chen, Ling
Liu, Hongdou
Peng, Ting
Ming, Zhengnan
Zou, Zizheng
Hu, Xiyuan
Luo, Wensong
Peng, Kunjian
Nie, Yuan
Luo, Tiao
Ma, Dayou
Liu, Suyou
Luo, Zhiyong
Source :
Cancers; May2023, Vol. 15 Issue 9, p2424, 18p
Publication Year :
2023

Abstract

Simple Summary: We designed and synthesized a series of novel naphthoquinone derivatives, of which ZSW has a high activity to inhibit the growth of tumor cells and low toxicity. We determined that ZSW suppresses triple-negative breast cancer cell activity by targeting STAT3 and provides a new compound structure candidate for TNBC clinical drug development. Background: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with shorter five-year survival than other breast cancer subtypes, and lacks targeted and hormonal treatment strategies. The signal transducer and activator of transcription 3 (STAT3) signaling is up-regulated in various tumors, including TNBC, and plays a vital role in regulating the expression of multiple proliferation- and apoptosis-related genes. Results: By combining the unique structures of the natural compounds STA-21 and Aulosirazole with antitumor activities, we synthesized a class of novel isoxazoloquinone derivatives and showed that one of these compounds, ZSW, binds to the SH2 domain of STAT3, leading to decreased STAT3 expression and activation in TNBC cells. Furthermore, ZSW promotes STAT3 ubiquitination, inhibits the proliferation of TNBC cells in vitro, and attenuates tumor growth with manageable toxicities in vivo. ZSW also decreases the mammosphere formation of breast cancer stem cells (BCSCs) by inhibiting STAT3. Conclusions: We conclude that the novel isoxazoloquinone ZSW may be developed as a cancer therapeutic because it targets STAT3, thereby inhibiting the stemness of cancer cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20726694
Volume :
15
Issue :
9
Database :
Complementary Index
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
163690618
Full Text :
https://doi.org/10.3390/cancers15092424