Back to Search Start Over

Large-Scale Road Network Traffic Congestion Prediction Based on Recurrent High-Resolution Network.

Authors :
Ranjan, Sachin
Kim, Yeong-Chan
Ranjan, Navin
Bhandari, Sovit
Kim, Hoon
Source :
Applied Sciences (2076-3417); May2023, Vol. 13 Issue 9, p5512, 16p
Publication Year :
2023

Abstract

Traffic congestion is a significant problem that adversely affects the economy, environment, and public health in urban areas worldwide. One promising solution is to forecast road-level congestion levels in the short-term and long-term, enabling commuters to avoid congested areas and allowing traffic agencies to take appropriate action. In this study, we propose a hybrid deep neural network algorithm based on High-Resolution Network (HRNet) and ConvLSTM decoder for 10, 30, and 60-min traffic congestion prediction. Our model utilizes the HRNet's multi-scale feature extraction capability to capture rich spatial features from a sequence of past traffic input images. The ConvLSTM module learns temporal information from each HRNet multi-scale output and aggregates all feature maps to generate accurate traffic forecasts. Our experiments demonstrate that the proposed model can efficiently and effectively learn both spatial and temporal relationships for traffic congestion and outperforms four other state-of-the-art architectures (PredNet, UNet, ConvLSTM, and Autoencoder) in terms of accuracy, precision, and recall. A case study was conducted on the dataset from Seoul, South Korea. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
9
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
163685683
Full Text :
https://doi.org/10.3390/app13095512