Back to Search Start Over

Recent Progress in Intensifying Synthesis of Acrylic Microspheres for Catalysis.

Authors :
Gaddale, Prameth
Kale, Manoj B.
Srinivasan, Sivaprakash
Borse, Rahul Anil
Sonawane, Gunvant H.
Soundararajan, Rajmohan K.
Sonawane, Shirish H.
Source :
Advanced Materials Interfaces; May2023, Vol. 10 Issue 13, p1-36, 36p
Publication Year :
2023

Abstract

Over the past decades, there has been an escalating rise in the need for chemicals and catalytic materials to keep up with global demands. Addressing those issues by conventional methods often becomes inefficient, with myriad operational risks. Process intensification methods through procedural and equipment‐based modifications have been considered greener, have higher heat and mass transfer rates, and operate with lower costs. In this review, research using ultrasonic reactors and microreactors, along with developments through an integrated external energy source, for synthesizing acrylic microspheres is covered extensively. Acrylic microspheres have garnered much interest for their biocompatibility, affinity toward functionalization, and wide range of applications. Core–shell, composite, functional‐group modified, and porous acrylic microspheres are used for enzyme immobilization and as catalyst carriers. The use of acrylic support has provided huge improvements in catalytic activity, reusability, recyclability, and overall stability. Finally, various other process intensification methods and alternate support materials are covered to help enhance future developments in the field of catalysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21967350
Volume :
10
Issue :
13
Database :
Complementary Index
Journal :
Advanced Materials Interfaces
Publication Type :
Academic Journal
Accession number :
163519694
Full Text :
https://doi.org/10.1002/admi.202202125