Back to Search Start Over

On the Capacity of Large Gaussian Relay Networks.

Authors :
Gastpar, Michael
Vetterli, Martin
Source :
IEEE Transactions on Information Theory; Mar2005, Vol. 51 Issue 3, p765-779, 15p
Publication Year :
2005

Abstract

The capacity of a particular large Gaussian relay network is determined the limit as the number of relays tends to infinity. Upper bounds are derived from cut-set arguments, and lower bounds follow from an argument involving uncoded transmission. It is shown that in cases of interest, upper and lower bounds coincide in the limit as the number of relays tends to infinity. Hence, this paper provides a new example where a simple cut-set upper bound is achievable , and one more example where uncoded transmission achieves optimal performance. The findings are illustrated by geometric interpretations. The techniques developed in this paper are then applied to a sensor network situation. This is a network joint source-channel coding problem, and it is well known that the source-channel separation theorem does not extend to this case. The present paper extends this insight by providing an example where separating source from channel coding does not only lead to suboptimal performance-it leads to an exponential penalty in performance scaling behavior (as a function of the number of nodes). Finally, the techniques developed in this paper are extended to included certain models of ad hoc wireless network, where a capacity scaling law can be established: When all nodes act purely as relays for a single sources-destination pair, capacity grows with the logarithm of the number of nodes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189448
Volume :
51
Issue :
3
Database :
Complementary Index
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
16348734
Full Text :
https://doi.org/10.1109/TIT.2004.842566