Back to Search
Start Over
Invariant tori for the Hamiltonian derivative wave equation with higher order nonlinearity.
- Source :
- Communications on Pure & Applied Analysis; May2023, Vol. 22 Issue 5, p1-27, 27p
- Publication Year :
- 2023
-
Abstract
- In this paper, we will study the Hamiltonian derivative wave equation with higher order nonlinearity \begin{document}$ y_{tt}-y_{xx}+my+(Dy)^5 = 0, \quad x\in\mathbb{T}: = \mathbb{R}/2\pi\mathbb{Z}, $\end{document} where \begin{document}$ m>0 $\end{document} is a potential and$ D: = \sqrt{-\partial_{xx}+m}. $We will prove that, for any integer \begin{document}$ b\geq2 $\end{document}, the above equation admits many small amplitude quasi-periodic solutions corresponding to \begin{document}$ b $\end{document}-dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form. [ABSTRACT FROM AUTHOR]
- Subjects :
- WAVE equation
HAMILTONIAN systems
TORUS
NONLINEAR wave equations
Subjects
Details
- Language :
- English
- ISSN :
- 15340392
- Volume :
- 22
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Communications on Pure & Applied Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 163484287
- Full Text :
- https://doi.org/10.3934/cpaa.2023033