Back to Search Start Over

C60 nanowire two-state resistance switching: fabrication and electrical characterizations.

Authors :
Tsukagoshi, Kazuhito
Umeta, Yukiya
Suga, Hiroshi
Source :
Japanese Journal of Applied Physics; Jun2022, Vol. 61 Issue SD, p1-9, 9p
Publication Year :
2022

Abstract

Newly discovered nanomaterials are expected to be applied as elements in new functional electronics. Since the discovery of fullerene, scanning tunneling microscopy under ultrahigh vacuum and a cryogenic temperature has been a popular method of extracting the properties of single molecules. However, some nanoelements exhibit a function based on a single-molecule property even though they are embedded in a cluster. Here, we present our experimental demonstration of a single-fullerene motion resistive switching device for functional fullerene electronics, which can be realized in crystal nanowires (NWs). We fabricated a two-terminal device using fullerene self-assembled C<subscript>60</subscript> NWs, which can be synthesized by dispersing fullerenes in a solution, keeping them in a supersaturated state, and maintaining a liquid–liquid interface. We found that the C<subscript>60</subscript> NW device can be operated at room temperature and can reproducibly perform several hundred repetitive switch operations. The reproducibility of the device fabrication is high, and we expect the appearance of integrated devices based on the results of our experiments. In this progress review of our C<subscript>60</subscript> switching device, we describe details of the device fabrication and electric operation that take advantage of the various properties inherent in fullerenes for reproducible future minimal-scale switching systems [Umeta, H. et al., ACS Appl. Nano Mater. 4, 820 (2021)]. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00214922
Volume :
61
Issue :
SD
Database :
Complementary Index
Journal :
Japanese Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
163253266
Full Text :
https://doi.org/10.35848/1347-4065/ac4e49