Back to Search Start Over

A machine learning approach to predict self-protecting behaviors during the early wave of the COVID-19 pandemic.

Authors :
Taye, Alemayehu D.
Borga, Liyousew G.
Greiff, Samuel
Vögele, Claus
D'Ambrosio, Conchita
Source :
Scientific Reports; 4/14/2023, Vol. 13 Issue 1, p1-14, 14p
Publication Year :
2023

Abstract

Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-protecting behaviors against the coronavirus disease 2019 (COVID-19) during the first wave of the pandemic. Exploiting the interpretability of a Random Forest algorithm via Shapely values, we find that a higher regional incidence of COVID-19 triggers higher levels of self-protective behavior, as does a stricter government policy response. The level of individual knowledge about the pandemic, confidence in institutions, and population density also ranks high among the factors that predict self-protecting behaviors. We also identify a steep socioeconomic gradient with lower levels of self-protecting behaviors being associated with lower income and poor housing conditions. Among socio-demographic factors, gender, marital status, age, and region of residence are the main determinants of self-protective measures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
163121371
Full Text :
https://doi.org/10.1038/s41598-023-33033-1